
Accessing Data using
ADO.NET

Connected Mode (DataReader),
Disconnected mode (Dataset)

Abdallah Moujahid
PMP®, COBIT® V5, ITIL® V3, ISO27002
Abdallah.moujahid@uic.ac.ma

3

• Before .NET, developers used data access technologies such as
ODBC, OLE DB, and ActiveX Data Object(ADO).

• With the introduction of .NET, Microsoft created a new way to
work with data, called ADO.NET.

• ADO.NET is a set of classes exposing data access services to .NET
programmers, providing a rich set of components for creating
distributed, data-sharing applications.

• ADO.NET is an integral part of the .NET Framework and provides
access to relational, XML, and application data.

Introduction

4

• ADO.NET classes can be found in System.Data.dll.

• This technology supports a variety of development needs,
including the creation of front-end database clients and middle-
tier business objects used by applications, tools, languages, and
Internet browsers.

• Hence, ADO.NET helps connect the UI, or presentation layer, of

your application with the data source or database.

Introductions (Cont.)

5

ADO.NET and .NET Base Class Library

6

• ADO.NET offers two types of architectural components to build
data-centric applications: Connected and Disconnected.

• Within Microsoft .NET Framework, ADO.NET is housed in the
namespace System.Data (the assembly name is System.Data.dll)

• All the classes and functions for connected and disconnected
components live in the same namespace.

• Hence, it is important to add a reference of System.Data to your
application irrespective of the connected or disconnected
architecture style you have chosen or will choose later.

ADO.NET Architecture

7

ADO.NET Architecture (Cont.)

8

ADO.NET Architecture (Cont.)

ADO.NET Core Objects

Object Description

Connection Establishes a connection to a specific data source. (Base
class: DbConnection)

Command Executes a command against a data source. Exposes
Parameters and can execute within the scope of a
Transaction from a Connection. (The base class:
DbCommand)

DataReader Reads a forward-only, read-only stream of data from a data
source. (Base class: DbDataReader)

DataAdapter Populates a DataSet and resolves updates with the data
source. (Base class: DbDataAdapter)

DataTable Has a collection of DataRows and DataColumns
representing table data, used in disconnected model

DataSet Represents a cache of data. Consists of a set of DataTables
and relations among them

10

Connected Data Access Model

11

Disconnected Data Access Model

12

Connected Disconnected

Database Resources - +

Network Traffic - +

Memory Usage + -

Data Access - +

Pros and Cons

13

• ADO.NET’s connected architecture relies on a consistent database
connection to access data and perform any operations on the
retrieved data.

• ADO.NET offers the following objects to help you build your
application with a connected architecture:

• Connection

• Command

• DataReader

Connected Data Objects

14

• Before you can do anything useful with a database, you need to
establish a session with the database server.

• You do this with an object called a connection. Here below are
data providers that provided by Microsoft:

Connection

15

16

String connString = string.Empty;

// Window Authentication

connString = “server = sqlexpress; integrated security = true”;

// SQL Authentication

connString = “server = sqlexpress; user id = sa; password = 1234567”;

// Code

SqlConnection conn = new SqlConnection(connString);

Conn.Open();

Conn.Close();

Connection (Cont.)

17

• Once you’ve established a connection to the database, you want
to start interacting with it and getting it doing something useful
for you.

• You may need to retrieve, add, update, or delete some data, or
perhaps modify the database in some other way, usually by
running a query.

• Whatever the task, it will inevitably involve a command.

Command

19

• Commands aren’t much use unless you can execute them.

• Commands have several different methods for executing SQL. The
differences between these methods depend on the results you
expect from the SQL.

• Queries return rows of data (result sets), but the INSERT, UPDATE,
and DELETE statements don’t.

Command (Cont.)

20

• A data reader is a fast, unbuffered, forward-only, read-only
connected stream that retrieves data on a per-row basis.

• It reads one row at a time as it loops through a result set.

• You can’t directly instantiate a data reader; instead, you create
one with the ExecuteReader method of a command.

DataReader

21

Steps of Data Acces : Connected Environment

Create connection

Create command (select-insert-update-delete)

Open connection

If SELECT -> use a DataReader to fetch data

If UPDATE,DELETE, INSERT -> use command object’s
methods

Close connection

24

// Connection string

String connString = @"server=.\sql2012;database=AdventureWorks;

Integrated Security=SSPI";

// Query

string sql = @"select Name from Production. Product";

// Create connection

SqlConnection conn = new SqlConnection(connString);

// Open connection

conn.Open();

DataReader (Cont.)

25

SqlCommand cmd = new SqlCommand(sql, conn); // Create command

SqlDataReader rdr = cmd.ExecuteReader(); // Create data reader

// Loop through result set

while (rdr.Read())

{

// Add to listbox - one row at a time

Console.WriteLine(rdr[0]);

}

// Close data reader

rdr.Close();

conn.Close();

DataReader (Cont.)

26

Connected – Update, Delete, Insert

Command class core methods:

o ExecuteNonQuery : Executes a SQL statement against a
connection object

o ExecuteReader: Executes the CommandText against the
Connection and returns a DbDataReader

o ExecuteScalar: Executes the query and returns the first column
of the first row in the result set returned by the query

ms-help://MS.VSCC.v80/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref4/html/T_System_Data_Common_DbDataReader.htm

27

Connected – Update, Delete, Insert

string connString =

Properties.Settings.Default.connStr;

SqlConnection conn = new

SqlConnection(connString);

SqlCommand cmd = new SqlCommand("delete from

Customers" + "where custID=12344", conn);

conn.Open();

cmd.ExecuteNonQuery();

conn.Close();

Can be an update or insert command

28

• ADO.NET’s disconnected architecture offers flexible application
design and helps organizations save database connections.

• Data can be retrieved and then stored locally on the device in the
form of a DataSet object.

• The retrieved DataSet can be modified by users on their local
devices such as laptops, handhelds, tablets, and so on, and once
that’s done, they can sync the changes into the central data
source.

• Disconnected architecture utilizes expansive resources like
Connection in a very optimum way (that is, to open late and close
early).

Disconnected Data Objects

29

• ADO.NET offers the following objects to help you build your
application with a disconnected architecture:

• DataSet

• DataAdapter

• DataTable

• DataColumn

• DataRow

Disconnected Data Objects (Cont.)

30

• The fundamental of DataSet

purpose is to provide a

relational view of data stored

in an in-memory cache.

DataSet

31

• If we simply want to read and display data, then we need to use
only a data reader, particularly if we’re working with large
quantities of data.

• In situations where we need to loop through thousands or millions
of rows, we want a fast sequential reader (reading rows from the
result set one at a time), and the data reader does this job in an
efficient way.

DataSet vs DataReader

32

• If we need to manipulate the data in any way and then update the
database, we need to use a data set.

• We need to think about whether we really need a data set;
otherwise, we’ll just be wasting resources. Unless the need is to
update the data source or use other data set features such as
reading and writing to XML files, exporting database schemas, and
creating XML views of a database, we should use a data reader.

DataSet vs DataReader (Cont.)

33

• When you first instantiate a data set, it contains no data. You
obtain a populated data set by passing it to a data adapter, which
takes care of connection details and is a component of a data
provider.

• A data set isn’t part of a data provider. It’s like a bucket, ready to
be filled with water, but it needs an external pipe to let the water
in.

• In other words, the data set needs a data adapter to populate it
with data and to support access to the data source. Each data
provider has its own data adapter in the same way that it has its
own connection, command, and data reader.

DataAdapter

34

DataAdapter (Cont.)

35

The data adapter constructor is overloaded. You can use any of the

following to get a new data adapter. We’re using the SQL Server data

provider, but the constructors for the other data providers are

analogous.

SqlDataAdapter da = new SqlDataAdapter();

SqlDataAdapter da = new SqlDataAdapter(cmd);

SqlDataAdapter da = new SqlDataAdapter(sql, conn);

SqlDataAdapter da = new SqlDataAdapter(sql, connString);

DataAdapter (Cont.)

36

So, you can create a data adapter in four ways:

• You can use its parameterless constructor (assigning SQL and
the connection later).

• You can pass its constructor a command (here, cmd is a
SqlCommand object).

• You can pass a SQL string and a connection.

• You can pass a SQL string and a connection string.

DataAdapter (Cont.)

37

// Connection string

string connString = @"server=sqlexpress;database=

AdventureWorks; Integrated Security=true";

// Query

string sql = @"select Name,ProductNumberfromProduction.Product

where SafetyStockLevel > 600";

// Create connection

SqlConnection conn = new SqlConnection(connString);

// Open connection

conn.Open();

DataSet with DataAdapter

38

// Create Data Adapter

SqlDataAdapter da = new SqlDataAdapter(sql, conn);

// Create Dataset

DataSet ds = new DataSet();

// Fill Dataset

da.Fill(ds, "Production.Product");

// Display data

gvProduct.DataSource = ds.Tables["Production.Product"];

//Connection close

conn.Close();

DataSet with DataAdapter (Cont.)

39

• A data table is an instance of the class System.Data.DataTable.

• It’s conceptually analogous to a relational table. You can access
these nested collections via the Rows and Columns properties of
the data table.

• A data table can represent a stand-alone independent table,
either inside a data set, or as an object created by another
method.

DataTable

40

DataTable table = new DataTable("ParentTable");

DataColumn column;

DataRow row;

column = new DataColumn();

column.DataType = System.Type.GetType("System.Int32");

column.ColumnName = "id";

column.ReadOnly = true;

column.Unique = true;

table.Columns.Add(column);

DataTable (Cont.)

41

column = new DataColumn();

column.DataType = System.Type.GetType("System.String");

column.ColumnName = "ParentItem";

column.AutoIncrement = false;

column.ReadOnly = false;

column.Unique = false;

table.Columns.Add(column);

DataColumn[] PrimaryKeyColumns = new DataColumn[1];

PrimaryKeyColumns[0] = table.Columns["id"];

table.PrimaryKey = PrimaryKeyColumns;

DataTable (Cont.)

42

dataSet = new DataSet();

dataSet.Tables.Add(table);

for (int i = 0; i<= 2; i++)

{

row = table.NewRow();

row["id"] = i;

row["ParentItem"] = "ParentItem " + i;

table.Rows.Add(row);

}

DataTable (Cont.)

43

• A data column represents the schema of a column within a data
table and can then be used to set or get column properties.

• For example, you could use it to set the default value of a column
by assigning a value to the DefaultValue property of the data
column.

• You obtain the collection of data columns using the data table’s
Columns property, whose indexer accepts either a column name
or a zero-based index, for example (where dt is a data table):

DataColumn col = dt.Columns["ContactName"];

DataColumn col = dt.Columns[2];

DataColumn

44

• A data row represents the data in a row.

• You can programmatically add, update, or delete rows in a data
table.

• To access rows in a data table, you use its Rows property, whose
indexer accepts a zero-based index, for example (where dt is a
data table):

DataRow row = dt.Rows[2];

DataRow

45

• ADO.NET consists of various data providers that allow an easy and
predefined object model to communicate with various industry
databases such as SQL Server, Oracle, Microsoft Access, and many
others.

• For example, if you use SQL Server, you should use the SQL Server
data provider (System.Data.SqlClient) because it’s the most
efficient way to access SQL Server.

• The OLE DB data provider supports access to older versions of SQL
Server as well as to other databases, such as Access, DB2, MySQL,
and Oracle.

Understanding .NET Data Providers

46

• Native data providers (such as System.Data.OracleClient) are
preferable for performance, since the OLE DB data provider works
through two other layers, the OLE DB service component and the
OLE DB provider, before reaching the data source.

Understanding .NET Data Providers

47

• Each .NET data provider is designed to do the following two things

very well:

– Provide access to data with an active connection to the data source

– Provide data transmission to and from disconnected data sets and data
tables

• Database connections are established by using the data provider’s
Connection class (for example, System.Data.SqlClient.SqlConnection).

• Other components such as data readers, commands, and data adapters
support retrieving data, executing SQL statements, and reading or
writing to data sets or data tables, respectively.

Understanding .NET Data Providers

48

• The .NET data provider for SQL Server is in the System.Data.SqlClient
namespace.

• Although you can use System.Data.OleDb to connect with SQL
Server, Microsoft has specifically designed the System.Data.SqlClient
namespace to be used with SQL Server, and it works in a more
efficient and optimized way than System.Data.OleDb.

• The reason for this efficiency and optimized approach is that this
data provider communicates directly with the server using its native
network protocol instead of through multiple layers.

Understanding the SQL Server Data Provider

49

Commonly Used SqlClient Classes

50

• Outside .NET, OLE DB is still Microsoft’s high-performance data
access technology.

• You can use this data provider to access data stored in any
format, so even in ADO.NET it plays an important role in
accessing data sources that don’t have their own ADO.NET data
providers.

Understanding the OLE DB Data Provider

51

Commonly Used OleDb Classes

52

Commonly Used Odbc Classes

53

• ODBC was Microsoft’s original general-purpose data access
technology.

• The ODBC architecture is essentially a three-tier process.

• An application uses ODBC functions to submit database requests.

• ODBC converts the function calls to the protocol (call-level
interface) of a driver specific to a given data source.

Understanding the ODBC Data Provider

54

• The driver communicates with the data source, passing any
results or errors back up to ODBC.

• Obviously, this is less efficient than a database-specific data
provider’s direct communication with a database, so for
performance it’s preferable to avoid the ODBC data provider,
since it merely offers a simpler interface to ODBC but still involves
all the ODBC overhead.

Understanding the ODBC Data Provider

55

• There is two main types of data access that provided from
ADO.NET: Connected Data Objects and Disconnected Data
Objects.

• Both types have their own advantages to fulfill the full-
functionality to access data.

• Both types their own main components:

• Connected Data Objects : Connection, Command, and
DataReader.

• Disconnected Data Objects : DataSet, DataAdapter, DataTable,
DataColumn and DataRow.

Summary

